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2D Materials
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Graphene Transition Metal Dichalcogenides (MoS,, WSe,, etc.) Hexagonal Boron Nitride (hBN)
(Semimetal) (Semiconductors) (Insulator)

« Naturally layered crystal structures (no dangling bonds)
Applications in electronics, catalysis, optoelectronics, and more
Thinness yields unique mechanical, thermal, optical properties

Two methods to obtain thin samples:

— Mechanical exfoliation from bulk crystal (“Scotch-Tape Method”)
— Direct CVD growth

— Transfers are necessary to get material on arbitrary substrates
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Image Source: Wikipedia
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Material Air-Stability

-S, -Se, -Te, WSe, selected for this project:
« Ambipolar semiconductor
Mo * Relatively air stable (~weeks-months)
/ « CVD capabilities at Stanford
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Nb, Sn
Hf, Zr
Ta, Ti

Image Source: 2D Semiconductors
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Time Scale of Degradation Courtesy of Dr. Mike Mleczko
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Transfer Process in ExFab Glovebox

I

WSe, transferred to arbitrary substrate

PDMS used as a “handle” to stick to and exfoliate WSe,

Heat helps release the PDMS from the target substrate

Solvents used to reduce polymer residue from PDMS and tape

Flakes with lateral dimensions of 10s-100s of um

C. Bailey and V. Chen 4



Designh of Experiment

» Goals: optimize the transfer process conditions and explore
any variation induced by different target substrates

PDMS Base:Curing PDMS Release Target Substrate
Agent Ratio Temperature
5:1 130°C SiO,/Si
7.5:1 150°C PEN
9:1 \ |
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Characterization Techniques

Atomic Force
Microscopy (AFM)
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Nat. Hazards Earth Syst. Sci. 17, 31-44 (2017)

Sharp tip rasters across a
sample

Deflection correlated to
topography

v' Measured surface
roughness of flakes after
transfer
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/ X-Ray Photoelectron\

Spectroscopy (XPS)
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X-rays stimulate the
release of photoelectrons
Measures bonding energies

v' Used peak ratios to assess
residue left behind by our

\transfer process J

/ Raman Spectroscopm

From objective To detector

Sample )
\/~f' ///
Raman substrate —— >

Nature Protocols 11, 664-687 (2016)

Relates vibrational modes
to light scattering
Spectrum acts as a
material “fingerprint”

v' Used the width and position
of major peaks to quantify

\material quality J
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AFM: Surface Roughness Analysis

100 nm

WSe, flake - Surface topography:

80 Increased levels of residue from
- transfer should increase surface
roughness of transferred material

Goal is to detect residue levels
that may not be visible optically

AFM image of WSe, flake transferred to PEN
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AFM: Compiled Surface Roughness Data

SiO, Substrate: RMS Surface Roughness vs. PDMS Consistency PEN Substrate: RMS Surface Roughness vs. PDMS Consistency
3 35 A
—_ —_ 3 c
£ 25 £ O .
= ° c “— S~
— / — CU S~ o
; , = |5 -.130°C
Q < o 0 = “~e oL
.E ~ ~ 1 50 C /7 g ,. _E E \. N .
oo S o ’ ’ W _.CE . N L
. ~ V4 4 - N 7’
=] S o 4 [ ~o N s,
0:15 ~.. \\ // 7 g o) .. \\’/
8 ) h = ~ b = ~ / i’ ’ 8 15 O o = -~ -~ ' 7 a b
g o S~ \./ /,’ £ o o ~~_ B N
: 130°C =~ v. N - 150°C "~y \
n e’ n ! »
» ¢ » =
E o E 05
| Less curing agent
. ) >
- 5 6 7 8 9 4 5 6 7 8 9
PDMS base:curing agent ratio PDMS base:curing agent ratio

SiO, substrate: initial surface roughness is 2.09 nm
PEN substrate: initial surface roughness is 2.00 nm

Surface roughness is on the order of the substrate, but flakes are relatively thick

Tentative conclusions:
« 7.5 (base) to 1 (curing) may leave the least residue

 Lower release temperature is better for Si substrate, higher for PEN



Characterization Techniques
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» Sharp tip rasters across a
sample

» Deflection correlated to
topography

« X-rays stimulate the
release of photoelectrons
* Measures bonding energies

v' Measured surface
roughness of flakes after

\transfer
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v' Used peak ratios to assess
residue left behind by our
transfer process

v' Used the width and position
of major peaks to quantify

material quality J

From objective To detector

Relates vibrational modes
to light scattering
Spectrum acts as a
material “fingerprint”

Raman Spectroscopm

Nature Protocols 11, 664-687 (2016)




XPS: Qualitative Assessment of Residue

« PEN target substrate should not
inherently have Si peaks

» Si peaks would indicate contamination

» Likely induced by environment or
transfer process

« SiO, target substrate should not
inherently have C peaks

» C peaks would indicate contamination

_Polyethylene naphthalate (PEN

FeeY

https://en.wikipedia.org/wiki/Polyethylene naphthalate
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Example spectra:

Polymer film with
siloxane contamination

300

200 100
Binding Energy (eV

Polydimethylsiloxane (PDMS)

HsC

/ \
HsC

HsC\ CHs CHg
: CHj
/Si\ /Si/
o \
CHj
-n

https://en.wikipedia.org/wiki/Polydimethylsiloxane



XPS: PEN Substrate with 150°C Release Temp.
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XPS: Compiled Data

Si0, Substrate: C/Si ratio vs. PDMS Consistency PEN Substrate: Si/C ratio vs. PDMS Consistency
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SiO, substrate: assume C is contamination
PEN substrate: assume Si is contamination

Tentative conclusions:
« 7.5 (base) to 1 (curing) may leave the least residue
» Lower release temperature is better for Si substrate, higher for PEN
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Characterization Techniques
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/ X-Ray Photoelectron Raman Spectroscopy

Spectroscopy (XPS)

From objective To detector
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* Relates vibrational modes
to light scattering

* Spectrum acts as a

material “fingerprint”

« X-rays stimulate the
release of photoelectrons
* Measures bonding energies

v' Used the width and position
of major peaks to quantify

v' Used peak ratios to assess
residue left behind by our

_/

material quality

\transfer process




Raman Spectroscopy — Typical WSe, Spectra

Counts

WSe2 on SlO2 WSe2 on PEN
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E,, peak is associated with in plane modes, A,; out of plane
E,, peak height and width used to quantify quality

C. Bailey and V. Chen




Raman Peak Width Trends —SiO,/Si
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* Lower release temperature — narrower Raman (better)
* Less curing agent — narrower Raman

« Baseline ~ 5 — Transfer induces some damage
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Raman Peak Width Trends — PEN
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* Opposite temperature trend — 150°C is better (?)
« Sample size of 3 flakes - more needed to see accurate trends

« Baseline ~5.5 —» 150°C barely induces damage
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Tentative Conclusions and Future Work

 Transfer conditions for lower residue, less material damage:
— PDMS consistency: 7.5 (base) to 1 (curing agent)
— Lower release temperature for SiO, target substrate

— Higher release temperature for PEN target substrate

« Need more data points for further optimization

« Our contribution: a generalized transfer procedure that can be
applied to a variety of material systems for different applications
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